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A&&a&-& B straight circular pipe rotating around an axis ~r~nd~~~~~ to its own axis, there occurs a 
secondary flow caused by Coriohs force, by which the flow resistance- and the heat-transfer rate are increased. 
In this paper, first, the turbulent heat convection with fully developed velocity and temperature fields is 
theoretically studied by assuming a boundary layer along the wall. The increases in Nusselt number ratio 
Nu/Nu, and friction coefficient ratio a/& for turbulent flow, where the denominators of the ratios are 
those without a secondary flow, are found to be less than in laminar region. Moreover no large circum- 
ferential variatian of local Nusselt number is shown to exist. 

Secondly, experimental results of heat-transfer coefficient, and those of local mass transfer coefficient 
by use of anaphtbafene-sublimation technique in laminar and turbulent regions are reported. The theoretical 
result for friction coefhcient agrees with the ex~r~rn~tal data reported before. Our present experimental 
data on heat-transfer agree with the theoretical formulae for local and average Nusselt numbers reported 

in this paper and the 1st report. 

NOMENCLATURE 

wr at the pipe axis; 
gI at the pipe axis; 
radius of the pipe; 
= - @p’/&); 
specific heat of fluid at constant pressure ; 
C,, density of stream at the wall surface 
and the flow core; 
djmensio~less velocity of the secondary 
flow in the flow core; 
diffusion coeficient ; 

j$, shear stress; 
T, - T; 
dimensionless temperatures E G/W (in 
the case of constant gradient of wall 
temperature), G/(T,,, - T,) (in the case 
of constant wall temperature); 
mass transfer coefficient; 
thermal conductivity of fluid; 
axial length of the measuring section; 
mass transfer rate per unit time per 
unit area; 

QRe; 
Nusselt number, = 2~~~~/k(~~ - I;nf ; 
analogous Nusselt number, 

Nusselt number without secondary flow ; 
speed of ratation; 
constant defined by equation (62); 

= (Q2P) (P/P) i 
p - (l/S) f_a2z2 ; 
Prandtl number; 
pressure f 
heat flux; 
dimensionless heat flux, E Q/kz (in the 
case of constant gradient of waI1 tem- 
perature), aQ/k(T, - T,) (in the case of 
constant wall temperature); 
Q,/kr (in the case of constant gradient 
of wall temperature), aQ,/k(T, - T,) 

(in thecaseofconstant walltemperature~; 
Reynolds number? E ~~~~~; 
gas constant ; 
radial co-ordinate in a cross section ; 
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Schmidt number ; 
Sherwood number; 
temperature ; 
I component of velocity, u s (a/v) U: 
+ component of velocity, D = (a/v) V; 
w*, Ic/ and z components of dimension- 
less friction velocity; 
Z component of velocity, w 5 (a/v) IV; 
mean velocity, B$ = (a/v) W,; 
axial co-ordinate, z = Z/a. 

Greek symbols 
I, E Re-'I"; 
jyu, E fip#Re+ I)@; 

z Re/& (inertia force)/ (Coriolis force) : 
specific weight ; 
dimensionless thickness of the boundary 
layer ; 
z r/a; 
resistance coe~~ient ; 
A without secondary flow; 
= (-apf/az)2a/(1/2)pW~; 
kinematic viscosity ; 
dimensionless distance from the pipe 
surface, 5 1 - q ; 
density ; 
temperature gradient along the pipe 
axis ; 
friction stress at the wall ; 
z ,,,$, axial and circumferential com- 
ponents of r, ; 
Q,, dimensionless shear stress in the 
axial direction ; 
circumferential co-ordinate in a cross 
section ; 
angular velocity of the pipe, (;, = 2a20/v. 

Subscripts 
1, value in the flow core region; 

4, value at m = 4; 

5, vahre at m = 5 ; 

m, mean value around the periphery 
(except g,, T,, V,, f%J; 

6, value at 5. = S. 

1. INTRODUCTION 

IN A STRAIGHT circular pipe rotating around an 
axis perpendicular to its own axis, there occurs 
a secondary flow caused by the Coriolis force. 
An increase in the flow resistance and the heat- 
transfer rate, due to the secondary flow, can be 
expected. A study of the influence of the rotation 
of a pipe upon the heat-transfer rate has practical 
importance for the development of cooling tech- 
niques for rotating parts which become hot. 

Our first report [l] presents a theoretical 
analysis in the fully developed laminar region, 
Approximate formulae for the Nusselt number 
in the case of an intense secondary flow caused 
by the Coriolis force are also reported. 

Concerning the flow without heat-transfer in 
a rotating pipe, there are analytical reports by 
Tto and Nambu [2], and Barua [3] on the laminar 
region, but on the turbulent region no analysis 
has been made for the flow. The resistance 
coefficient for the flow without heat-transfer is 
experimentally obtained by Trefethen [4], and 
Ito and Nambu [S]. Experimental formulae for 
the resistance coefftcient in the turbulent region 
are reported by the latter. However, no attention 
has been directed toward heat-transfer in a 
rotating pipe except in our first paper. 

The object of the present study is: to make 
experiments on heat and mass transfer in a 
rotating pipe to experimentally examine the 
influence of the rotation upon heat-transfer in 
the laminar and turbulent regions; to compare 
these regions; to compare these experimental 
results of heat-transfer in the laminar region with 
a theoretical analysis discussed in the first 
report; and, to theoretically analyze velocity 
and temperature fields in the turbulent region 
and compare the results with experimental data. 

2. THEORETICAL ANALYSIS OF THE FLOW Ih’ A 
ROTATING PIPE IN THE TURBULENT REGION 

2.1. Co-ordinate and fundamental equations 
The system of the co-ordinates is taken as 

shown in Fig. 1. Vve assume Z % r. Since a 
secondary flow appears in the direction of the 
rotation of a pipe as seen in Fig. 1, an angle 
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FIG. 1. System of co-ordinate. 

measured from the secondary flow streamline 
passing through the center of the cross section 
is expressed by $. 

r, @ and 2 components of velocity are denoted 
by U, Vand w respectively, the pressure by p, 
the density by p, and the kinematic viscosity 
by v. The.dimensionless quantities are defined 
as follows; 

rj = r/a, z = Z/a, (24, u, w) = (u/v) (U, K W) 

~33 = 2a2w/v, P = (a2/v2) (p/p). 

The pressure can be divided into two parts: 
one produced by the centrifugal force, and the 
other by the secondary flow. We write a dimen- 
sionless equation for P: 

p = Qgz2 + p’. 8 (1) 

The gradient of P’ along the pipe axis (z) is 
constant in the fully developed flow. Hence, we 
may put 

- (aP/az) = C (constant). 

The fluid discussed here is incompressible. 
The temperature difference between the fluid 
and the wall is small. Therefore, we disregard the 
physical property variation and the buoyancy 
effect, and analyze the fully developed velocity 
and temperature fields. 

Shear stresses acting on the elemental volume 
of the fluid as shown in Fig. 2 are denoted by 
f,, and-f,,. Their dimensionless quantities are 
expressed byzz,, = (a2/v2w;/p)and+ = (a2/v2) 
-&,/p). The force balance equation in the axial 

FIG. 2. Shear stresses acting on the elemental volume. 
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direction is represented in the following form: 
Ul = D cos $, v1 = - D sin $ 

(5) 

& (yz,,) + 3 = - c + n(u cos I// 
w1 = A + [(C/D) - &] q cos $ 

where A and D are constants. 

- v sin $) (2) 

where the seond term on the right-hand side of 
2.3. Friction stress at the wall and velocity distri- 

the equation signifies the Coriolis force acting 
butions in the boundary layer 

in the axial direction due to the secondary flow. If the friction stress at the wall, zw, and velocity 

In the turbulent flow, a dimensionless shear distributions in the boundary layer are known, 

stress in the fluid is given by the relations between A and C in equation (5). 
and 6 can be obtained. We adopt the dimension- 

dW 
szrl = & - 21w - U’M.’ less distance from the pipe wall < = 1 - q in the 

(3) 
following analysis. 

BW 
The resistance coefficient formula for the 

77 r_-* = -~~~ - VW - v w 
qar 

flow without the secondary flow is 

where time-averaged mean values are expressed 
A0 = - 1;m crRe (6) 

by U, v, and w again, fluctuated velocities by The friction stress at the wall, z,, is derived from 
u’, a’ and w’, Reynolds stresses due to the the above equation and the assumption of 

I I turbulent fluctuation by u w and v w . 1/(2m - 1) power velocity distribution [6]. 
Shear stresses uw and VW caused by the a and m are constants. The value-of m is usually 

secondary flow are much stronger than the 4 or 5. The subscript 0 means the resistance 
other stresses in most of the cross section, which coefficient without the secondary flow. The 
is termed the flow core region. On the other hand, Reynolds number is Re = 2a W,/v. 
there is the very thin layer along the pipe wall, The friction stress at the wall, z, concerns 
where we should pay attention to the stresses i and w. Since v 4 w. rw_ z T,. Namely. the 
other than uw and VW. We call this region the axial component of the friction stress at the wall 
boundary layer whose thickness is a& When the is equal to the friction stress at the wall. 
pressure gradient in the axial direction is con- Dimensionless axial and circumferential com- 
stant, 6 varies not in the axial direction but only ponents of r, are obtained from equation (6): 
in the circumferential direction. However, the 
variation of 6 is considered to be so small that 
6 is regarded as constant in the following analysis. 

2.2. Velocity distributions in the flow core region 

zztl = - UlWl (4) 
z,* = - UIWI. 

ul, u1 and wi, which satisfy equations (3) and (4) 
the balance between the Coriolis force and a 
pressure gradient in the cross section, and more- 
over the equation of continuity, are given by 

x 

The velocity components u, v and w in the 
flow core region are denoted by ui, ri and wl. 
The dimensionless shear stresses in equation (3) 
are rewritten as: 
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where w* and u* are components of dimension- 
less friction velocity. 

w is defined from the condition of w = wld 
(w,atr=?i)at<=6as: 

w = w,&/6)i’(2m- l). (9) 

u is determined so as to satisfy these conditions : 
1/(2m - 1) power law near the wall ; v = v1 
at i: = 6; and, the continuity of the secondary 
flow rate. 

v = - D sin Ic, [-_E(; _ 1)(;>‘“‘“” 

;ndt+ C6. (14) 
b 

We substitute equations (5) (9) and (10) into the 
right-hand side of equation (14), then we get 

Wan = E + FCOSI) (13 

where 

. 
We will find out the unknown quantities A 

and C. From equations (5) and (9), A is obtained 
as: 

Re 1 

A=T1-(l/m)s+(1/4m-1) 
d2. (11) 

In consideration of the balance of forces of the 
fluid surrounded by the wall and two cross 
sections of a pipe, C is taken as: 

c = 2w;2 (12) 

where the subscript m signifies a mean value 
around the periphery. From equation (12) 
and wz’ obtained from equations (7) and (1 l), 

4m(2m - 1) 

+ (2m + 1) (4m - 1) 
sin2$]D(g-&) 

+ QD sin 2$ (16) 

6m - 1 

F = (2m + 1) (4m - 1) AD* (17) 

It is clear from equation (16) that the mean 
value of Wan, i.e. Waft, satisfies equation (12). 
The variation of E with II/ is smaller than that of 
F cos t,h in equation (16). Therefore, it is possible 
to replace E with its mean value, C/2. We nut 
equation (15) equal to equation (7) and sub- 
stitute equation (11) and (13) into them. Then we 

we get 

c=; 

where we neglect smaller terms than d2 in (11) : where 

2.4. 7he boundary-layer momentum equations 
The relation between A, C and 6 has been 

XI= l+(4m2-1)(4m-1) fi2 + 

obtained. Since 6 and D remain unknown 
[ 2m(6m - 1) c >I Re 

quantities, we obtain them by using equations 

[ 

(4m2 - 1) (4m - 1) + b 
- for the boundary layer momentum in the axial 

and circumferential directions. 
I() - 2m(6m - 1) Re . 

(19) 

The integral equation expressing the equili- The parameter x’ represents the effect of the 
brium of momentum in the axial direction is Coriohs force acting on the secondary flow. 
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The momentum equation in the circum- 
ferential direction is expressed by 

d d 

*2 - dPa 
II _- s dl/,d5 - Osinrj 

s 
wd< 

0 0 

6 d 
a 

+v,% (20) 

where Ps is the value of P, at 5 = 6. 
We may consider that 6 itself is the mean value 

of the boundary layer thickness around $ = 
- rc N 7r. Then we get 

DS-(2m+l),m _ 2;; 1 [~~P&f’l;l-Q~+r)‘” 

x Re”‘“oi. (21) 

From equations (18) and (21), D and 6 are 
obtained as : 

D = ~Re”l/(I.I+ l)r-+(“I+ 1) 
x 

,(2m+ 1)/2(m+ 1) 

where 

(22) 

log6 = 
1 

m+l ; ((2in + 1) log (2m +- 1) 
[ 1 

- (10m + 1)log m + (18m - 5)log(2m - 1) 

- (6m - 5) log (4m - 1) - (2m -i 1) log (6m 

- 1) - 7(2m -i l)log2} + mlog a 1 (23) 

where 

The physical meaning of which is the ratio of 
the inertia force to the Coriolis force. 

2.5. Resistance coefficient 
The resistance coefficient J is defined as 

follows : 

(27) 

which can also be rewritten in the following 
form by use of equation (1) : 

where 

A* E - $ 2a/(1/2)pW$ ( ‘) (2% 

The first and the second terms on the right- 
hand side of equation (28) correspond to the 
pressure rise caused by the centrifugal force 
and the secondary flow, respectively. Then we 
rewrite I* as: 

,I* = 16CJRe’. (30) 

We put equation (13) into equation (30) by use 
of equation (24). 

iI* 
cowl’ = (Re/~m/2Xwl/2)ll(m+ 1) 

r 

AII* 
x ’ + (Re/rm/2X~m/2)l/(m+ 1) 

I 
(31) 

where 
s=s^ 

l/(m+ 1) 

(24) 1 
log ;2* = ~ 

C 
J J - log(2m + 1) - (8m - 1) 

m-t1 4’ 

log6 = ,ti [i {m log (2m + 1) - (5m - 4) 

x log m + (15m - 8) log (2m - 1) 

- (7m - 4) log (4m - 1) - m log (6m - 1) 

- 7mlog2) + mlogcc 1 . (25) 

The parameter r in equations (22) and (24) 
is expressed by 

r = ReJd = W,/aw. (26) 

log m + (16m - 7) log (2m - 1) 

- (8m - 3) log (4m - 1) -I- log (6m - 1) 

+ 7log2) + mloga 
1 

(32) 

log AL* = i(mlog(2m + 1) -(13m 

+ 4) log m + (19m - 4) log (2m - 1) 

- (7m - 4) log (4m - 1) - m log (6m - 1) 

- 7mlog2) + mloga 

I 

. (33) 
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1, and A* at m = 4 are expressed by Ao4 and 
A$. tl is determined to be 0305 (the value cor- 
rected from 0316) in comparison with usual 
experimental results. So we get as: 

0.304 
2:: CWI + = (&/r2p)+ 

[ 

0107 
l + (&/r2p)) 1 (34) 

where xi is 

xi = [l + 5.14/r2]+ - 2.27/r. (35) 

The result of equation (34) is shown and com- 
pared with experimental results obtained by 
Trefethen [4] in Fig. 3. Good agreement is 
found between the theoretical curve and experi- 
mental values by Trefethen for the large length- 
to-diameter ratios, 60 and 87. However, data 
for the small ratio lie between the theoretical 
curve and that for a case without the secondary 
flow. This implies that the secondary flow is not 
fully developed. 

When Re and Q are considerably large, 
A,, = 0184 Re-* (at m = 5). From this formula, 
we may put m = 5 and a = 0184 and get 

nf [I-x;]+ = 
0194 

(Re/r2.5&2.5)* 

where 1; is 

0066 
’ + (Re/r2.5$5)+ 1 (36) 

x; = [l + 649/l-‘]+ - 2.55/r. (37) 

The numerical check of A*, and A: suggests 
that J.z is valid for practical use except for the 

case of extremely large Re and A The ratio of AX 
at m = 4 to the resistance coefficient without 
the secondary flow, AX/&,, is shown in Fig. 4. 

I.OL ’ ” ’ ’ ’ ” ’ ’ ” 1 
0.4 I 

Rd&Y 

loo 200 

FIG. 4. A,/& vs. Re,T’x”. 

3: HEAT TRANSFER IN THE TURBULENT REGION 
IN A ROTATING PIPE 

3.1. Fundamental equations 
In the case of a constant gradient of wall 

temperature along the pipe axis, the temperature 
7’ in the fully developed temperature field is 
written as follows : 

T= ZZ - G(r, +) (38) 

wheie z denotes the uniform wall temperature 
gradient along the pipe axis per unit length and 
G is a function of r and $. 

It may be assumed that the wall temperature 
remains the same ln the direction of @. There- 
fore, we put T, as T, = rZ. 

If the dimensionless temperature is expressed 
by g = Glra, the energy equation is written as: 

(39) 

where q,, and qti are the dimensionless quantities 
defined by q,, = Q,,/kz and q* = Q*/kz, and 
Q, and Q# are heat fluxes in radial and circum- 
ferential directions. q,, and qJl are also expressed 

by 
ag qq = - - + Pr(ug + iqjp 
all 
,. w 



1814 Y. MORI, T. FUKADA and W. NAKAYAMA 

where g and g’ respectively represent the time- 
averaged mean value and the fluctuated value 
of temperature. 

We will define the dimensionless temperature 
for the case of the constant wall temperature [7]. 

9 = (Cl -VAT, - T,) 

where T, is the mixed mean temperature defined 
below. 

n /I . _ 

T, = 1 
7ca2 W, ss ‘TWrdrdll/. (41) 

7lO 

T can be expressed by the form of 
T, - T oc exp (-e’2) using an eigen value e’ 
in the region far from the entrance of a pipe [7]. 
Therefore, when the dimensionless heat fluxes 
and the dimensionless eigen value are defined as 
q,, = aQ,,/kK - K,h qJ, = aQ&Tw - T,) and 
e = ae’ in case of the constant wall temperature, 
q,, andq* are written in the same form as equation 
(40) and the energy equation is obtained by 
replacing Prw by ePrwg on the right-hand side 
of equation (39). 

3.2, Temperatzfre distribution in the flow core 
region 

Heat transfer caused mainly by a secondary 
flow appears in the flow core region. From 
equation (40) we get 

qtl = Pru,g,, qti = Pru,g,. (42) 

In the case of a uniform z, the substitution of 
equation (42) into equation (39) leads to the 
particular solution 

1 c 
g1 = A’ + 2. 5 - zl q2 + ; q cos I) ( ) (43) 

where A’ is a constant. 
In the case of a uniform T,, the solution is 

obtained from the energy equation and equation 
(42) as follows : 

where m is a constant to be determined by the 
definition of so as to satisfy a normalized con- 
dition below. 

wgydqd$ = 1. (45) 

-n 0 

Equation (44) can be expanded because the 
variation of temperature in the cross section of 
the flow core is assumed to be small. 

(46) 

We assume 6 6 1 and substitute w, and gr 
into equation (45). We have 

1 

1 e2A2 ’ (47) 

+ s-o’- 

3.3. Determination of the dimensionless heat flux 
at the wall, qw, and the constants A’ and e. 

The definition of the Nusselt number is 

2aQwm -. NU = @-, _ T,) (48) 

where Q,, is the mean value of Qw around the 
periphery of a cross section ($ = - n: h n). 

When the dimensionless heat fluxes at the wall 
for the uniform z and uniform T, cases are 
written as q,,, = Q,,,/kz and q,,, = aQ,,,/k(T, - T,) 
respectively, the Nusselt number for a case 
without a secondary flow is given as follows: 

Nu, = flPr’R&” ‘)l”‘. (49) 

The dimensionless heat flux is also expressed 
for both wall temperature conditions as: 

q, = q,Pr”A’“- l)/rnfi- limgld 

i 

m-l 
1 + ~~.-m~~ 

1 

2 

(50) 
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where /I and k are constants, gIa is the value of 
g1 at 5 = 6, and + $ (1 - 6)%os2* 

> I 1 x cos + 
aw = 2-(m+lYm rm [1+&(;-&) +gq+$N 
The values of m, /I and kin the case where Pr > 1 
are scarcely influenced by wall temperature 
conditions. Therefore, we may use the same 
symbols for both wall temperature conditions 
of the uniform r and the uniform T, and adopt 
equations (50) and (51) .in the following analysis. 

The equation describing the heat balance of 
the fluid element in the unit length of the pipe is 
given by 

I II a 

J Q&W = PC, A JJ i’-H+drd$. (52) 

-1 -no 

Equation (52) can be rewritten in the following 
forms for each wall temperature condition by 
using dimensionless quantities. 

The equation for the uniform z case is 

4 wm = (l/4) Re . Pr 

and for the uniform T, case is 

(53) 

qwn. = (l/4) eRePr. (54) 

q,,,,, denotes the mean value of q,,, around the 
periphery of a cross section in both equations. 

The value of gIa for the uniform r case can be 
obtained by putting q = 1 - 6 into equation 

(43). 

gla = A’ + & ; - b (1 - S)Z + $1 - 6) 
( > 

cos$z4~+& -c-b +;cos*. 
6 > 

(55) 

We can get the value of gIa for the uniform T, 
case from equation (46) in the same way as 
before. 

g1,j = m I +& g-G, + p 
[ C > 

(1 - 6)2 

x cos 2* + ; 
1 

(1 - 6) + & ; - C.% 
C 

E 1 + (eA/D) cos +. (56) 

For the uniform r case, equation (55) is sub- 
stituted into equation (50) qwm obtained from 
equation (50) i&o equation (53) and neglect 
smaller terms than S2 to get A’. 

A’ = (Pr’ --I( - AA’) 
A’ 

m-l 
Re’h+ 1) 

1+76 

(r#m + 1) (57) 

where 81 and AA’ are given below. 

log AI’ = & i ((4m + 5) log (2m + 1) 
[ 

+ (4m - 5) log m - (8m - 15) log (2m - 1) 

- 11 log (4m - 1) - log (6m - 1) - 7 log 2) 

+ loga 1 - l%B (58) 

AA, = 4m(4m - 1) (6m - 1) P 
(2m + 1)2 (2m - 1)’ CL’ (59) 

For the uniform T, case, the same way is 
applied to get 

Ae = 4m(4m - 1)(6m - l)(m - 1)b’ 
(2m + 1)2 (2m - 1)3 a’ (60) 

The value obtained by substituting Ae into AA’ in 
equation (57) is equal to l/e. Since these cor- 
rection terms AA’ and Ae are small, A’ and l/e 
are nearly equal. 

3.4. Energy integral equations in the boundary 
layer 

The energy integral equation for the uniform r 
case is given as: 
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For the uniform ?“, case, the energy integral 
equation is obtained by replacing the third term 
on the right-hand side of equation (61) by 

e; wQd4. 
6 

However, convective terms due to w, i.e. 

i wdc and e! wgd<, are negligibly small. 
b 

The tem~rat~re distribution in the boundary 
layer is assumed to be 

for n’ for the uniform z case is also applicable to 
the uniform ‘& case. 

n’z221n- 1. (68) 

3.5. Nusselt numbers 

For the uniform z case, equation (48) can be 
expressed in the dimensionless form as : 

Q = Q,X5/W"' (62) where g,,, is defined as : 

where n’ is an unknown quantity to be obtained. 
II 1-8 nd 

2 
From equation (50) Q, can be rewritten in the 

following forms. For the uniform r case, we 
Qnt = n~e 

US 
Qiw,rtdqdrl/ + Qw 

‘IX 0 is -X0 
have 

(1 - 0d5d# . (70) 

%V = Q,, + 4; cos $. (63) For the uniform 7” case, we have 

For the uniform T, case, we have 
RePre 

Nu = rn--. 
2 

where It is clear from equations (69) and (71) that l/e 

& = &,pr”A’“- 1)/m- l/m (A/I)). corresponds to g,. However, the substitution of 
equations (50), (9), (43), (62) and (68) into equation 

We substitute equations (10) and (62) into equa- (70) shows that A’ is a governing factor in gm. 
tion (61) and for the uniform r case, we have Therefore, the wall temperature condition has no 

4w = 4wm + q:,A’ cos I/?. (65) 
influence on the Nusselt number since A’ z lie. 

We will discuss the Nusselt numbers for the 
For the uniform T, case, we have uniform z case in the following analysis. 

where 

qk = Pr 

4, = q,, + q:: cos lj (66) 

(67) 

The Nussett number is derived from equation 
(69) and (70). 

Nu =I. 
Pr Re”“” + 1 f 

-.-_ 
zff^ Pr’ -$jgm (&)1/W+ 1) 

where correction terms Ag, and ANa are given 

by 

Therefore, n’ can be obtained by putting equation 4m(m - 1) (4m - 1) (6m - 1) fl 
(63) equal to equation (65) or equation (64) to ‘Qm = 
equation (66). The equation for n’ is the same for 

(2pn + 1)2 (2m - I)3 cc 
(73) 

both wall temperature conditions because of the A& = 4m2 - 2rn - 1 6 
. relationship A’ z l/e. The following equation n22(2m + 1) 

(74) 
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The ratio of the Nusselt number to that without 
a secondary flow is 

NlJ pr1-r l/m(m + 1) 
-= 

NuO 2&l(P+ --I( As,,,) 

For a case of Pr z 1, from m = 4, Q = 0.305, 
/I = 0.038 and k = l/3 we obtain 

0039Pr Re* 

NU4 = Pr+ - 0*074(&)~ 

(76) 

For a case of Pr > 1, from the relation between 
m = 5, a = 0.184, /I = O-023 and k = 0.4 and 
pF’-k/(p+-k - AS,,,) z 1 we get 

Nu 
Re* 

S Pr0.4 = 0.025 ___ 
(rx;) Ii 

[’ + (&g)j (77) 
The ratio of Nu/Nu, for Pr z 1 is illustrated 

in Fig. 5 and for Pr > 1 in Fig. 6. 

-1 
15 - 

,.,I% 
R?/( rx f 

FIG. 5. Nu/Nu,, vs. ReJTZ,f2 at Pr = 07 and 1. 

I.01 
04 I 

R!h~.,‘” 
lo0 600 

FIG. 6. Nu/Nu, vs. Re/T2’5.X’2’5. 

4. EXPERIMENTS 

4.1. Experimental apparatus 
The experimental apparatus is drawn in Fig. 7. 

It is divided into a rotating body and two 
measuring parts (1) (2) as shown in Fig. 8. 
We can vary the speed of rotation of the body 
by a motor (3) from 0 to 1000 rpm. The slip-ring 
mechanisms (7), (8) are used for the heat-input 
and the measurement of temperature. The input 
can be adjusted by the slidacs. A compensating 
circuit is set to correct errors of the temperature 
measurement due to a temperature rise at a slip- 
ring. The air sent from a compressor enters the 
straight pipes (l), (2) after it travels trough a flow 
meter (5) an air-input apparatus having a seal 
mechanism (6), and the rotating body. A flow 
rectifier is set at the entrance to the part which 
measures the heat-transfer rate to minimize the 
influence of the curvature of this apparatus upon 
the inflow of the air. 

The measuring parts consist of those for heat 
and mass transfer rates as shown in Fig. 8. 

The measuring part for the mass transfer rate 
is divided into two semicylinders suitable for 
the measurement of the rate of sublimation by 
using the naphthalene-sublimation technique. 
Naphthalene with a 6 mm i.d. and a 3.5 mm thick- 
ness is cast onto the inner wall of the brass semi- 
cylinder, which is covered with three heaters to 
keep the wall temperature constant in the 
direction of the flow. Moreover, an insulator 
covers these heaters. 

We put thermo-couples within the naphthalene 
layer to measure the temperature at the surface 
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FIG. 7. Experimental apparatus 

1. Mass tmnsfer measuring part 2. Heat tmnsfer measuring part 

I 
Insulator 0 

z 

FIG. 8. Detailed measuring parts. 

by extrapolating from a temperature drop within The thickness of sublimation of the naphtha- 

this layer. The wall temperature is measured at lene is measured by using a micrometer with a 
four positions along the pipe axis and at six special attachment suitable for the measurement. 
positions in the circumferential direction at one The measuring part for the heat transfer rate 
of the four axial positions. is a straight brass pipe with a 9 mm i.d. The outer 
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surface of the pipe is covered with seven separate 
heaters in the axial direction. An insulator is 
used around the heaters. A sub-heater is 
attached at the exit part of the pipe to prevent 
heat loss. Measurement of the wall temperature 
is made at nine positions in the axial direction. 
The temperature distribution is obtained in the 
circumferential direction at three positions 
among the nine mentioned above. The tempera- 
ture at the center is measured at two positions 
in the fully developed field on the pipe axis. 

4.2. Measuring method and arrangement 
The mass transfer coefficient for the experi- 

ments on mass transfer is defined as: 

fi = h,(C,, - C,,) (78) 

where ti is the rate of sublimation per unit time 
and unit area, and C,, and C, denote the 
concentrations of naphthalene vapor at the 
naphthalene surface and in the flow core region. 
C,, and C, can be expressed as follows by 
using the well-known relationship. 

c,, = p,,, C”, = g 
fi”k’ “ttl 

where P, describes the vapor pressure at the 
naphthalene surface, R, the gas constant, A4 
the total rate of sublimation up to the measuring 
position and V, the mean flow rate of the fluid. 

The rate of sublimation riz is expressed as 
follows in the measurement of the naphthalene 
thickness. 

TiI = ys (80) 

where y denotes the specific weight and S the 
thickness of naphthalene sublimation. 

The mass transfer coefficient n, is derived from 
equations (78)(80) 

ho= 2’S 
P M’ VW --- 

RoT, v, 
The analogous Nusselt number is defined by 

using the analogy between mass and heat 
transfer. 

Nu, = Sh(Pr/Sc)’ (82) 

where Sh expresses the Sherwood number 
z 2 ah,/D, Pr the Prandtl number, SC the 
Schmidt number = 2.6 1 is a transformation 
exponent, the value of which is usually deter- 
mined as I = l/3 for the forced convection. We 
also adopt this value for both laminar and 
turbulent regions in this paper. 

The experiments are made under these con- 
ditions ; the speed of rotation n = 0 N 1000 rpm. ; 
Re = 1000 - 10800; T, = 25 N 45°C; and the 
measurirrg time lasts 3 h. We neglect the rate 
of sublimation during the measurement of the 
naphthalene thickness sublimated because it is 
considered to be a little less than 5 per cent of that 
during the pipe rotation. 

The Nusselt number for the experiments on 
heat transfer is defined in the following equation. 

Nu = 2aQ,,/k(T, - T,) (83) 

for the fully developed velocity and temperature 
distributions is written as: 

Q,, = UP)~aW,yC, (84) 

where r is the temperature gradient in the axial 
direction, W, the mean velocity, y the specific 
weight and C, the specific heat. 

According to the results of the measurement 
of temperature, the temperature gradient of the 
pipe wall toward the axial direction agrees with 
that at the center of the pipe. Since the difference 
found between temperatures at the center ob- 
tained theoretically and experimentally is within 
10 per cent, T, is obtained from the velocity and 
temperature distributions assumed and the 
temperature at the center experimentally 
measured. 

5. EXPERIMENTAL RESULTS 

5.1. Experiments in the laminar region 
(i) Experiments for calibration (Experiments 

when a pipe is not rotating). We made experiments 
on forced convective heat-transfer, when a pipe 
is not rotating, to examine the accuracy of our 
measurements. The local Nusselt number taken 
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in the radial direction in the cross section at 
Z/L= 0.63, when the pipe is not rotating, 
i.e. without a secondary flow, is illustrated in 
Fig. 9. The solid line in the figure represents 
the solution of the Nusselt number for the con- 
stant wall temperature with the parabolic 
velocity distribution. The experimental results 
agree well with this solution and have little 

Re = IQ00 
z/i = 0.63 

r, = 40% 
T = 25% ‘xi 

- Theoretical curve 
(constant wall temperature 
with parabolic velocity 
distribution) 

& 

n = 0 rev /min 

FIG. 9. Local mass transfer result in Jaminar region (no 
rotation). 

variation in the circumferential direction. The 
analogous Nusselt number in the direction of 
the flow agrees well with the theoretical solution 
when the pipe is not rotating. It is clear from the 
experimental results mentioned above that the 
experimental apparatus and the measuring 
methods are suitable for our study. 

(ii) Experiments weep a pip is rotating. 
One of the experimental results when the pipe 
is rotating is given in Fig. 10. It shows the local 
Nusselt number by equation (82) in the cross 
section at Z/L = 0.63, where the velocity field 
is considered to be fully developed. The solid 
line in the figure represents the theoretical solu- 
tion obtained in the first report and the dotted 
line the solution when the pipe is not rotating. 
Good agreement is seen between the ex- 
perimental results and the theoretical solution, 

- Theoretical curve 
- - - Theareticat carve 

( no rofafi0n.i.a. 

Re = 2200 
N -- 2,28 K 105 
Z/L = @63 
?i+J = 41.4oc 

Rotation 
n = 920 rev/mm 

FIG. 10. Local analogous Nusselt number in laminar region 
(rotation). 

and the heat-transfer rate increases in the 
direction of the action of the Coriolis force. 

We vary the speed of rotation and the Reynolds 
number, which are parameters of these experi- 
ments, to make experiments and to plot the 
results in Fig. 11. The ratio of the mean Nusselt 
number obtained from further experiments to 
that for a case without a secondary flow, Nu/Nu,, 
is shown on the ordinate in Fig 11 and the 
dimensionless parameter describing the in- 
fluence of the Coriolis force found in the theoreti- 
cal analysis on the abscissa. The @-marks repre- 
sent the results obtained from the mass transfer 
experiments by using the analogy between heat 
and mass transfer, the O-marks the experi- 
mental results from heat-transfer experiments. 
the solid and the dotted lines the theoretical 
solutions for cases of the constant wall tempera- 
tureandtheconstantgradientofwtilltemperature, 
respectively. The distribution of the local Nusselt 
number in the cross section at ZJL = 063 
represented by a O-mark corresponds to Fig. 10. 
These results show that the analogy is established 
between heat and mass transfer and that the 
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=0.163 ($y, Pr =0.7 

e 
t 

l Results of mass transfer rxp 
0 Results of heat transfer exp. 

I04 2 4 6 8 105 2 4 6 8 

wt 

FIG. 11. Heat and mass experimental results in laminar region. 

heat-transfer rate in the laminar region increases 
considerably due to a secondary flow caused by 
the rotation of the pipe. 

5.2. Experiments in the turbulent region 
(i) Experiments for calibration (Experiments 

when a pipe is not rotating). The distribution of 
the local analogous Nusselt number in the cross 

---Theoretical curve 
RI = IO 000 
Z/L -0.63 

( no rotation .i.e. 
without a secondary 

b = 34.6F N&Z flow) 

40 40 
Nu, 

n -0 rev/min 
FIG. 12. Local mass transfer result in turbulent region (no 

rotation). 

section at Z/L = 0.63 when a pipe is not rotating 
is illustrated in Fig. 12 as the calibration in the 

- Theantiwl curve 
---Theoretical curve 

(no r0tation.i.e. 
without o secondary 

n = 920 rev/min 

FIG. 13. Local mass transfer result. in turbulent region 
(rotation). 

turbulent region. The solution for a case without 
a secondary flow is shown by the dotted line. 
It agrees with the experimental results and they 
remain the same in the circumferential direction. 
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Therefore, the experimental apparatus and the 
measuring methods are accurate and suitable 
Ior me experiments in the turbulent region. 
(ii) Experiments when a pipe is rotating. We give 
the distribution of the local analogous Nusselt 
number in the cross section at Z/L= 0.63 in 
Fig. 13 as an example of the experimental results 
when the pipe is rotating. The dotted line denotes 
the solution for a case without a secondary 
flow and the solid line the theoretical solution. 
They agree well with the experimental results. 
Even though the influence of the secondary flow 
is seen all over the pipe, an increase in the local 
Nusselt number at the stagnation point of the 
secondary flow is not so considerable. It is 
different from the case in the laminar region in 
Fig. 10. 

We vary the speed of rotation and the 
Reynolds number to take the ratio of Nu to Nu,. 
The results are shown in Fig. 14. We express the 

P 
I.4 

l Results of mass transfer exp. 
2 
a I-3 

t 
0 Results of heat transfer exp. 

2 B I 

FIG. 14. Heat and mass experimental results in turbulent 
region. 

results of mass transfer the the O-marks and 
the experimental solutions of heat transfer by the 
O-marks. The solid line describes the theoretical 
solution reported in this paper, which agrees 
fairly well with the experimental results. The 
distribution of the Nusselt number represented 
by a O-mark in the cross section corresponds to 
Fig. 13. 

The following characteristics are found in the 
case of the turbulent region from these results: 
the influence of a secondary flow caused by the 

Coriofis force is not so considerable in the 
turbulent region as in the laminar region ; though 
the increase in the mean Nusselt number is 
more than 10 per cent, the distribution of the 
local Nusselt number has little variation in the 
circumferential direction. 

6. CONCLUSIONS 

In a straight circular pipe rotating around an 
axis pe~pendicul~ to its own axis, the theoretical 
analysis on the velocity and temperature fields 
in the fully developed turbulent flow and the 
experiments on the laminar and turbulent 
regions were made. We came to the following 
conclusions from the results. (1) The boundary 
layer is assumed to appear along the pipe wall 
in an analysis on the flow in the turbulent region. 
The resistance coefficient for the fully developed 
velocity field obtained here is referred to that 
being in proportion to Re-I”“. The value 
obtained by setting m = 4 agrees well with the 
experimental results. (2) fn an analysis on heat 
transfer in the turbulent region. the Nusselt 
number is obtained on the assumption that it is 
in proportion to Re(“‘-‘~~“’ PP. The ratio of the 
mean Nusselt number Nu to Nu, for a case 
without a secondary flow is obtained as a func- 
tion of the dimensionless parameters including 
the speed of rotation and the Reynolds number. 
A considerable increase in Nu/Nu, is not seen in 
comparison with the case of the laminar Bow. 
and the local Nusselt number has little variation 
in the circumferential direction. (3) The experi- 
ments on heat and mass transfer were performed 
by using the naphthalene-sublimation technique. 
The distributions of the heat-transfer coefficient 
and the mean heat-transfer coefficient in the 
circumferential direction in the cross section of 
the laminar and turbulent regions were obtained. 
Good agreement was found between the Nusselt 
number experimentally obtained and the 
analytical results of the laminar and turbulent 
regions reported in the first and this paper, 
respectively. 
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TRANSFERT PAR CONVECTION THERMIQUE DANS UN TUBE TOURNANT 
AUTOUR D’UN DIAMETRE D’UNE SECTION DROITE CIRCULAIRE 

Rbm&-Dam un tube rectiligne ii section droite circulaire tournant autour d’un axe perpendiculaire a 
son propre axe. il apparalt un Ccoulement secondaire provoqd par la force de Coriolis, ce qui entraine 
l’augmentation de la r&stance a l’itcoulement et du flux ~ermique. On Ctudie tout d’abord de maniere 
theorique darts cet article la convection thermique turbulente pour des champs de temperature et de 
vitesse pleinement developpts en supposant une couche limite le long de la paroi. Les accroissements des 
rapports des no,mbres de Nusselt Nu/Nu, et du rapport des coefficients de frottement A/&, (les denomi- 
nateurs correspondant a l’absence de I’tcoulement secondaire) sont moindres pour le cas turbulent que 
pour le cas laminaire. De plus on montre que le nombre de Nusselt local ne varie pas beaucoup sur la 
circonf&rence. On rend compte des rbsultats exp&imentaux concernant le coefficient de transfert thermique 
et le coefficient de transfert massique local par utili~tion de la technique de subli~tion du naphtal~ne 
pour les rbgions laminaires et turbulents. Le resultat the,,-ique pour le coefficient de frottement est en 
accord avec les result&s experimentaux rapport&s ulterieurement. Les r&hats experimentaux present&s 
sur le transfert thermique sont en bon accord avec la formule thCorique relative aux nombres de Nusselt 

local et moyen donnee dans cet artii le et dans le premier rapport. 

KONVEKTIVE W~RME~BERTRAGUNG IN EINEM RADIAL ROTIERENDEN 
ZVLINDRISCHEN ROHR. 

Ztxammenfassung-In einem geraden zylindrischen Rohr, das um eine Achse senkrecht zur Zyhnderachse 
rotiert, entsteht info@. der Corioliskraft eine Sekundkstromung, durch die der Striimungswiderstand 
und die ilbertragene Wlrmemenge zunimmt. In dieser Arbeit wird erstens unter der Annahme einer 
Grenzschicht entlang der Rohrwand die turbulente Warmetibertragung bei voll ausgebildetem Geschwin- 
digkeitsprofil und das Temperaturfeld theoretisch untersucht. Die Zunahme der Verhaltnisse der Nusselt- 
Zahl Nu/Nu, und der Reibun~koefflzienten i/&--wobei sich die Grossen im Nenner auf den Fall 
ohne ~kun~rs~~mung beziehen-ergab sich dabei kleiner als im laminaren Bereich. 

hrdies konnte keine grosse Ver;inderung der lokalen Nusselt-Zahl iiber dem Zylinderumfang fest- 
gestellt werden. 

Als zweites wird iiber experimentelle Ergebnisse ftlr den Wiirmeiibergangskoefzienten und fur den 
lokalen Stoffiibergangskoeffizienten, bei Verwendung der Nanhthalin-Sublimations-Technik. im lami- 
naren und im turbulenten Bereich berichtet. 

Die f&ereinstimmung der theoretischen und der experimentellen Werte ftii den Reibungskoettizrenten 
wurde schon friiher erwiihnt. Unsere vorliegenden experimentellen Werte fiir den W~rme~~rgang 
stimmen tiberein mit den theoretischen Werten fiir die lokale und die mittlere Nusselt-Zahl, wie sie in 

diesem und im ersten Bericht behandelt sind. 

KOHBEKTHBHbIH IIEPEHOC TEIIJIA BO BPAIIIAIOIIIEHCII 
PAAHAJIbHOH KOJIbHEBOH TPYBE 

AmwraqarJr-B II~REOB KOJIbqt?BO% Tpy6e, Bpa~3~4e~CH BOKP~F oc~,KepKeff~ffKy~UpKO~ 
CBOe8~06CTBeHHOltOCII,6JlarOAapK KOpKO~K~OBO~ CHJIe BO3HKKaeTBTOpK~HOeTeqeH~e,~3-33 
KOTO~OFO yBe~K~KBaeTc~conpoT~B~eKKe HoToKak! CK0p0~~b KepeKocaTenna.~ sawomqen 
pa6oTe nposeRen0 TeopeTsiYecnoe nccJrexonawne Typ6yJreriTnolt Tennonol nonueronrin npa 
KO~HOCTbH)pa~B~ThIXIIO~HXCKOpOCTU~TeM~ep~TypblB~pe~UO~O~~HHKH3~H~KR~Or~~HK~- 

c 
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HOrO CJIORB~OJIbCTeHHII. HaiQeHo,sTo yBeJIMYeHKeOTHOLLIeKMII wcna HyCCeJIbTaNu/NuoM 

OTHOlLIeHKR KO@+iU&ieHTa TpeHUR h/hi, &JlH TyPiiyJIeHTHOrO TeYeHEIK, rae B 3HaMeHaTeJIIH 

COOTHOIIIeHHti BXOART BeJIH%lHbI 6e3 BTOpllYHOrO IIOTOKB, MeHbUIe, 9eM B naMElHapHO$i 06- 
JIaCTa. EpOMe TOrO, IIOK33aH0, 4TO He CymeCTByeT 60JIblIIMX H3MeHeHd-i IlO OKPymHOCTM 

JIOKaJIbHOro wcna HyCCenbTa. 

R~-BT~~~IX,II~~~~T~BJI~H~I~K~II~~HM~KT~JI~H~I~~H~~~HMR KosfjN@~aeHTanepeHocaTenna, 

aTaKxe KO3$I+i~KeHTaJIOKaJIbHOrO IIepeHOCaMaCCbI C ItOMOnlbKI cy6naMaqm Ha$TaJIklHa B 

JlaMHHapH+X ki Typ6yneHTHbIX o6nacmx. TeopeTwfecKHe 3Ha9eHHFi KOacptpHQKeHTa TpeHWl 

COrJlaCyIOTCf? C lIpHBe@HHblMH paHee 3KCIIepUMeHTaJtbHblMH 3HaYeHAflMH. ~KCllepKMeHTalIb- 

HhIe AaHme no nepeHocy Tenna, IIpHBeAeHHbIe B AaHHOt pa6oTe, COrJIaCylOTCR C TeOpeTH- 

'4eCKEiMIl IjOpMyJlaMK AJIH JlOKaJlbHblX Pi CpeAHliX VElCeJl HyCCenbTa, KpHBeAeHHbIX B Ha- 

CTOHlQei pa6oTe H B KepBOM OTri+Te. 


