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Abstract—In a steaight circular pipe rotating around an axis perpendicular to its own axis, there occurs a
secondary flow caused by Coriolis force, by which the flow resistance and the heat-transfer rate are increased.
In this paper, first, the turbulent heat convection with fully developed velocity and temperature fields is
theoretically studied by assuming a boundary layer along the wall. The increases in Nusselt number ratio
Nu/Nu, and friction coefficient ratio A/, for turbulent flow, where the denominators of the ratios are
those without a secondary flow, are found to be less than in laminar region. Moreover no large circum-
ferential variation of local Nusselt number is shown to exist,

Secondly, experimental results of heat-transfer coefficient, and those of local mass transfer coefficient
by use of a naphthalene-sublimation technique in laminar and turbulent regions are reported. The theoretical
result for friction coefficient agrees with the experimental data reported before. Our present experimental
data on heat-transfer agree with the theoretical formulae for local and average Nusselt numbers reported

in this paper and the 1st report.

NOMENCLATURE N, O©ORe;

w, at the pipe axis;

Nu,

Nusselt number, = 2aQ,.,./KT, — T,};

g; at the pipe axis; Nu,, analogous Nusselt number,

radius of the pipe; = Sh(Pr/Sc);
= — (0p'/02); Nu,, Nusselt number without secondary flow;
specific heat of fluid at constant pressure ; n,  speed of ratation;

C,.., density of stream at the wall surface v, constant defined by equation (62),;

and the flow core; P, = @) (p/p);

dimensionless velocity of the secondary P, p—({18) %2

flow in the flow core; Pr, Prandtl number;

diffusion coefficient; p,  pressure;

f-y, shear stress; Q. heat flux;

T, - T, g,  dimensionless heat flux, = Q/kr (in the
dimensionless temperature, = Gfra (in case of constant gradient of wall tem-
the casc of constant gradient of wall perature), aQ/KT,, — T,) {in the case of
temperature), GAT,, — T,) (in the case constant wall temperature);

of constant wall temperature); dw  Q/kt (in the case of constant gradient
mass transfer coefficient; of wall temperature), aQ, /KT, — T,)
thermal conductivity of fluid; (in thecase of constant wall temperature);
axial length of the measuring section; Re, Reynolds number, = 2aW,,/v;

mass transfer rate per unit time per R,, gas constant;

unit area; r, radial co-ordinate in a cross section:
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Sc¢,  Schmidt number ;

Sh, Sherwood number;

T,  temperature;

U, r component of velocity, u = (a/m U;

V., ¢ component of velocity, v = (a/v} V;

v*,  w*  and z components of dimension-
less friction velocity;

W, Z component of velocity, w = (a/v) W

W, mean velocity, W, = {a/v) W,;

Z, axial co-ordinate, z = Z/a.

Greek symbols
a, Ay = Re VM
B,  Nug = BPr*Refm~Vim;
= Re/® (inertia force)/{Coriolis force):
y,  specific weight;
d, dimensionless thickness of the boundary
layer ;
o =rja;
A, resistance coefficient;
4o A without secondary flow;
A*, = (—0p'/0Z)2a/(1/2) pW;

v, kinematic viscosity;

¢ dimensionless distance from the pipe
surface, = 1 — 1,

p,  density;

7, temperature gradient along the pipe

axis;

7,  friction stress at the wall;

wo» Twy axial and circumferential com-

ponents of 7,,;

7.4, dimensionless shear stress in the

axial direction;

W, circumferential co-ordinate in a cross
section;

o, angular velocity of the pipe, & = 2a’w/v.

Subscripts
1, value in the flow core region;
4, valueatm = 4;
5, valueatm = 5;
m, mean value around
{except gum Lo Vins Win)s
8, valueaté. = o

the periphery

Y. MORI, T. FUKADA and W. NAKAYAMA

1. INTRODUCTION
IN A STRAIGHT circular pipe rotating around an
axis perpendicular to its .own axis, there occurs
a secondary flow caused by the Coriolis force.
An increase in the flow resistance and the heat-
transfer rate, due to the secondary flow, can be
expected. A study of the influence of the rotation
of a pipe upon the heat-transfer rate has practical
importance for the development of cooling tech-
niques for rotating parts which become hot,

Our first report [1] presents a theoretical
analysis in the fully developed laminar region,
Approximate formulae for the Nusselt number
in the case of an intense secondary flow caused
by the Coriolis force are also reported.

Concerning the flow without heat-transfer in
a rotating pipe, there are analytical reports by
Tto and Nambu [ 2], and Barua [3] on the laminar
region, but on the turbulent region no analysis
has been made for the flow. The resistance
coefficient for the flow without heat-transfer is
experimentally obtained by Trefethen [4], and
Ito and Nambu [5]. Experimental formulae for
the resistance coefficient in the turbulent region
are reported by the latter. However, no attention
has been directed toward heat-transfer in a
rotating pipe except in our first paper.

The object of the present study is: to make
experiments on heat and mass transfer in a
rotating pipe to experimentally examine the
influence of the rotation upon heat-transfer in
the laminar and turbulent regions; to compare
these regions; to compare these experimental
results of heat-transfer in the laminar region with
a theoretical analysis discussed in the first
report; and, to theoretically analyze velocity
and temperature fields in the turbulent region
and compare the results with experimental data.

2. THEORETICAL ANALYSIS OF THE FLOW IN A
ROTATING PIPE IN THE TURBULENT REGION
2.1. Co-ordinate and fundamental equations

The system of the co-ordinates is taken as
shown in Fig. 1. We assume Z > r. Since 4
secondary flow appears in the direction of the
rotation of a pipe as seen in Fig. 1, an angle
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Rotation —=—
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FiG. 1. System of co-ordinate.

measured from the secondary flow streamline
passing through the center of the cross section
is expressed by .

r, ¥ and Z components of velocity are denoted
by U, Vand W, respectively, the pressure by p,
the density by p, and the kinematic viscosity
by v. The dimensionless quantities are defined
as follows;

n=rla,z=2lauovw=(@v)y(UVW)
& = 2a’w/v, P = (a®>/v*) (p/p).

The pressure can be divided into two parts:
one produced by the centrifugal force, and the
other by the secondary flow. We write a dimen-
sionless equation for P:

P =16°Z* + P. (1)

The gradient of P’ along the pipe axis (Z) is
constant in the fully developed flow. Hence, we
may put

— (0P'J0z) = C (constant).

The fluid discussed here is incompressible.
The temperature difference between the fluid
and the wall is small. Therefore, we disregard the
physical property variation and the buoyancy
effect, and analyze the fully developed velocity
and temperature fields.

Shear stresses acting on the elemental volume
of the fluid as shown in Fig. 2 are denoted by
f.. and-f,,. Their dimensionless quantities are
expressedbyt,, = (@®/v){f;/p)andt,, = (a®/v?)
{f.4/p). The force balance equation in the axial

FI1G. 2. Shear stresses acting on the elemental volume.
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direction is represented in the following form:

(n.,) = — C + dlucos y

v e
non noy
— vsin )

2)

where the seond term on the right-hand side of
the equation signifies the Coriolis force acting
in the axial direction due to the secondary flow.

In the turbulent flow, a dimensionless shear
stress in the fluid is given by

w .
Toy= o= — UW — U W

"o 3)
Ty = —— — W —0W
non

where time-averaged mean values are expressed
by u,v, and w again, fluctuated velocities by
u, v and w, Reynolds stresses due to the
turbulent fluctuation by u'w” and v'w".

Shear stresses uw and vw caused by the
secondary flow are much stronger than the
other stresses in most of the cross section, which
is termed the flow core region. On the other hand,
there is the very thin layer along the pipe wall,
where we should pay attention to the stresses
other than uw and vw. We call this region the
boundary layer whose thickness is ad. When the
pressure gradient in the axial direction is con-
stant, § varies not in the axial direction but only
in the circumferential direction. However, the
variation of é is considered to be so small that
disregarded as constant in the following analysis.

2.2. Velocity distributions in the flow core region

The velocity components u, v and w in the
flow core region are denoted by u;, v, and w,.
The dimensionless shear stresses in equation (3)
are rewritten as:

T,

7 = - ulwl

4
T:‘/’ = — W,

u,, v, and w,, which satisfy equations (3) and (4),

the balance between the Coriolis force and a

pressure gradient in the cross section, and more-

over the equation of continuity, are given by

Y. MORI, T. FUKADA and W. NAKAYAMA

u;, = Dcosy,v;, = — Dsiny (5)
w; = A + [(C/D) — &l ncosy

where A and D are constants.

2.3. Friction stress at the wall and velocity distri-
butions in the boundary layer

If the friction stress at the wall, 7,,, and velocity
distributions in the boundary layer are known,
the relations between A and C in equation (5).
and ¢ can be obtained. We adopt the dimension-
less distance from the pipe wall¢ = 1 — #in the
following analysis.

The resistance coefficient formula for the
flow without the secondary flow is

o = aRe™ /™, (6)

The friction stress at the wall, 7, is derived from
the above equation and the assumption of
1/2m — 1) power velocity distribution [6].
o and m are constants. The value“of m is usually
4 or 5. The subscript 0 means the resistance
coefficient without the secondary flow. The
Reynolds number is Re = 2aW,,/v.

The friction stress at the wall, 7,, concerns
i and w. Since v € w, 1, = 7,,. Namely, the
axial component of the friction stress at the wall
is equal to the friction stress at the wall.

Dimensionless axial and circumferential com-
ponents of 7, are obtained from equation (6):

o = (ﬁf AN
p? p 23+ (1/m)

P
m(dm —

- 2m—11/C
—— = -

m A\D
e Y A UL
- ",2 p 21+(1/m)(2m _ 1)

I:(z(r: . 1)12)](2m——1)'m A(m-—l)/m y 5»(m+1)/m
mam —

m—11{C .
x D [1 + Am—71<5 — w) cos lﬂ] siny  (8)

(7
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where w* and v* are components of dimension-
less friction velocity.

w is defined from the condition of w = w,;
(w,at { = d)até = Jas:

w = wy,(&/3)em Y. ©)

vis determined so as to satisfy these conditions:
1/2m — 1) power law near the wall; v = v,
at £ = §; and, the continuity of the secondary
flow rate.

v= — Dsiny [— ;n—_mT(g - 1) <§)1/(2m—1)
1 2m ¢
o)}

We will find out the unknown quantities A
and C. From equations (5) and (9), 4 is obtained
as:

_ Re 1
T 21— (1/mé + (1/4m — 1)

In consideration of the balance of forces of the
fluid surrounded by the wall and two cross
sections of a pipe, C is taken as:

C = 2w}?

8. (11)

12)

where the subscript m- signifies a mean value
around the periphery. From equation (12)
and w*? obtained from equations (7) and (11),
we get

2 |em-1ym
c=2 [(2_'”___&] e 2= 1im = 1im

16 | m(dm — 1)
[1 G 5] (13)
m

where we neglect smaller terms than 62 in (11):

2.4. The boundary-layer momentum equations

The relation between A, C and 6 has been
obtained. Since 6 and D remain unknown
quantities, we obtain them by using equations
for the boundary layer momentum in the axial
and circumferential directions.

The integral equation expressing the equili-
brium of momentum in the axial direction is

1811

o

o
svdf — P—vadé + @siny
1]

)
*2 _
W= Mgy o

0o

3
{vdé+ Co.

0

(14)

We substitute equations (5), (9) and (10) into the
right-hand side of equation (14), then we get

w*?2 = E + Fcosy (15)
where
_ om — 1 2
E= [(Zm Tham - Y
amem — 1) ., ] <g_ )
tamt nam - Y] P\p
+ oDsin?y  (16)
bm—1___ 4p, (17)

F= @m + 1) (4m — 1)

It is clear from equation (16) that the mean
value of w*2, i.e. w,*?, satisfies equation (12).
The variation of E with  is smaller than that of
F cos y in equation (16). Therefore, it is possible
to replace E with its mean value, C/2. We put
equation (15) equal to equation (7) and sub-
stitute equation (11) and (13) into them. Then we
get

D5 —

o [(4m2 — 1)(4m — 1)]%
81 2m6m — 1)

[ Im — 1)? |@m—tym
x L———-'(n(r:m —)l)] Retm—Nim ot (18)
where
,_’l (4m2_1)(4m_1)(@>2]%
=Y T mem =1 \Re
@m?* —H@dm -1 /&
’[ 2m(6m — 1) ] (R—e)' )

The parameter y' represents the effect of the
Coriolis force acting on the secondary flow.
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The momentum equation in the circum-
ferential direction is expressed by

]
¥ = j(:i};j dé — (OSIDl/Ideé
4]

3 )
0 0
+ Ulevdf—wjvzdé

where P; is the value of P, at & = 4.

We may consider that § itself is the mean value
of the boundary layer thickness around y =
— n ~ 7. Then we get

Zm —1 (2m . 1)2 ~(2m+ 1)}/m
m2a | m(dm — 1)
x Rel™®.

(20)

Dé—(2m+ 1)/m —

(21)

From equations (18) and (21), D and ¢ are
obtained as:
D = ﬁRem/(,;z+1)F—%(m+ 1)11(2m+ 1)/2(m+ 1) (22)

where

1 | ‘
log D = e [Zl {(2m + Dlog(2m + 1)]

— (10m + Dlogm + (18m — S)log(2m — 1)
— (6m — S)log (4m — 1) — (2m + 1)log(6m

— 1) —72m + 1)log2} + mlog oc] (23)
" Fm/Z mj2\1/(m+ 1)
5=25 (—1—> (24)
Re

log é ——%’—[ {mlog(2m + 1) — (5m — 4)

x logm + (15m — 8)log(2m — 1)
— (Im — 4)log (4m — 1) — mlog(6m — 1)
— Tmlog2} + mlogua|. (25)

The parameter I' in equations (22) and (24)
is expressed by

I' = Re/®d = W, /aw. (26)
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The physical meaning of which is the ratio of
the inertia force to the Coriolis force.

2.5. Resistance coefficient
The resistance coefficient 4 is defined as

follows:
ap
= - 2a/(1/2 72
A ( az) a/(1/2) pW,,

which can also be rewritten in the following
form by use of equation (1):

(27)

A2
i= - 41‘:zz+z* (28)
where
oy
* 2
I* = ( ; z) 2a/(1/2) pW?2. (29)

The first and the second terms on the right-
hand side of equation (28) correspond to the
pressure rise caused by the centrifugal force
and the secondary flow, respectively. Then we
rewrite 1* as:

J* = 16C/Re. (30)

We put equation (13) into equation (30) by use
of equation (24).

I*
}.*[FX]? = Re/rm/z /m/Z)l/(m+1)
AL®
X l’l -+ (Re/rm/Zer/Z)l/(m+1):| (31)
where
Pk 1 s
log A* = o Zl—log(2m+ 1) — (8m — 1)

logm + (16m — 7)log (2m — 1)
— (8m — 3)log(dm — 1) + log(6bm — 1)
+ Tlog2} + mloga 7| (32)

log Adl* = -VVT%[% {mlog(2m + 1) ~(13m
+ 4 logm + (19m — 4 log2m — 1)
—(Tm — 4)log(dm — 1) — mlog(6bm — 1)
— Tmlog2} + mlog a]. (33)
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Ao and A* at m = 4 are expressed by 1,, and
7%. a is determined to be 0-305 (the value cor-
rected from 0316) in comparison with usual
experimental results. So we get as:

* r14 — 1 34
where y, is

xe = [1 + 514/1?} — 227/I. (35)

The result of equation (34) is shown and com-
pared with experimental results obtained by
Trefethen [4] in Fig. 3. Good agreement is
found between the theoretical curve and experi-
mental values by Trefethen for the large length-
to-diameter ratios, 60 and 87. However, data
for the small ratio lie between the theoretical
curve and that for a case without the secondary
flow. This implies that the secondary flow is not
fully developed.

0-6

o 7/16in. tube

o4 » 3/16in. tube)@)

3 o2

3

-y ~

~ [o N3 o )\o=0-‘3'6 ﬁe—lm)\ ~o
008} >
006

- [ | I T | 1 11 a1

00401 i 100

10
Re(Ty'F
FI1G. 3. A3/, vs. Re/ Ty,

When Re and & are considerably large,
Aos = 0184 Re~*(at m = 5). From this formula,
we may put m=5 and o = 0184 and get

0194
A [y 32 =
5 [ xs1? = (Re/I"z'sx'sz‘s)*

0066
[ gz | 00
where x5 is ’

¥s =[1 + 649/r2JF — 255r.  (37)

The numerical check of 1% and A* suggests
that A% is valid for practical use except for the

1813

case of extremely large Re and &. The ratio of A%
at m = 4 to the resistance coefficient without
the secondary flow, 1}/Aq4, is shown in Fig. 4.

| i 1 |

100 200

. L1l 1 L

10 )
Re/NTyn?

FIG. 4. A,/Aq vs. Re,T2y2.

3. HEAT TRANSFER IN THE TURBULENT REGION
IN A ROTATING PIPE
3.1. Fundamental equations
In the case of a constant gradient of wall
temperature along the pipe axis, the temperature
T in the fully developed temperature field is
written as follows:

T=1Z — G(r,{) (38)

where 7 denotes the uniform wall temperature
gradient along the pipe axis per unit length and
G is a function of r and .

It may be assumed that the wall temperature
remains the same in the direction of . There-
fore, we put T, as T, = tZ.

If the dimensionless temperature is expressed
by g = G/za, the energy equation is written as:

9
non
where g, and q, are the dimensionless quantities
defined by ¢, = Q,/kt and gy = Qu/kr, and

Q, and Q, are heat fluxes in radial and circum-

ferential directions. g, and gq,, are also expressed
by

0qy
(ﬂq,,) + 77_5" = Prw (39)

o _
dy= — 5, + Priug + 7g)

3 (40)
9= — 2 4 Privg + 77)

noy
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where g and ¢’ respectively represent the time-
averaged mean value and the fluctuated value
of temperature.

We will define the dimensionless temperature
for the case of the constant wall temperature [7].

g = (Tw —T)/(Tw _ Tm)

where T,, is the mixed mean temperature defined
below.

a

1
mleH TWrdrdy.

0

T, = 41)

T can be expressed by the form of
T, — Toc exp(—e'Z) using an eigen value ¢
in the region far from the entrance of a pipe [7].
Therefore, when the dimensionless heat fluxes
and the dimensionless eigen value are defined as
Gy = aQ,/MT, — T,). 4, = aQy/k(T, — T,) and
e = ge’ 1n case ol the constant wall temperature,
g» and gy are written in the same form as equation
(40) and the energy equation is obtained by
replacing Prw by ePrwg on the right-hand side
of equation (39).

3.2. Temperature distribution in the flow core
region

Heat transfer caused mainly by a secondary
flow appears in the flow core region. From
equation (40) we get

4y = Pru,g,, qv = Prv,g,. (42)

In the case of a uniform z, the substitution of
equation (42) into equation (39) leads to the
particular solution

1 /C A
g1=A’+E(B—d)>n2+Bncosw (43)
where A’ is a constant.

In the case of a uniform T, the solution is
obtained from the energy equation and equation
(42) as follows:

N ¢ +1 € _ o cos Y
g, = IN €Xp D >\D @w)n

neosy | (@4
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where N is a constant to be determined by the
definition of so as to satisfy a normalized con-
dition below.

n 1

2

n 0

(45)

Equation (44) can be expanded because the
variation of temperature in the cross section of
the flow core is assumed to be small

— eA e C
=.N |l + — BRI § B
g1 [+Dncosd/+2D{(D w)

ed*| , e?A [[Cc |
+F}ﬂ COs ¢+W B—w

2

A
+ 834}113 cosy + ...  (46)

We assume & < 1 and substitute w, and g,
into equation (45). We have

1

R A
8D \D

3.3. Determination of the dimensionless heat flux
at the wall, q,, and the constants A* and e.
The definition of the Nusselt number is

N = (47)

C1erA?
tg DT

(48)

where Q,,, is the mean value of Q,, around the
periphery of a cross section (Y = — 7 ~ n).

When the dimensioniess heat fluxes at the wall
for the uniform t and uniform 7T, cases are
written as q,, = Q,/krand q,, = aQ, /KT, — T,)
respectively, the Nusselt number for a case
without a secondary flow is given as follows:

Nu, = BPr<Re™ Dim, (49)

The dimensionless heat flux is also expressed
for both wall temperature conditions as:

qw = qur"A(m" 1)/"‘5# 1/mgl(i L
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where f# and k are constants, g,, is the value of
g, at & =4, and

2 Y(m—1)/m
j,, = 2"+ m {(2_”’___1)_}( o am — 113(51)

m(4m — 1) 2m

The values of m, f and k in the case where Pr > 1
are scarcely influenced by wall temperature
conditions. Therefore, we may use the same
symbols for both wall temperature conditions
of the uniform 7 and the uniform 7, and adopt
equations (50) and (51) in the following analysis.

The equation describing the heat balance of
the fluid element in the unit length of the pipe is
given by

s

3 n
J‘Qwad‘/, = pcp 52 j

-n

TWrdrdy.  (52)

Oy sy

Equation (52) can be rewritten in the following
forms for each wall temperature condition by
using dimensionless quantities.

The equation for the uniform 7 case is

Gwm = (1/4) Re . Pr (53)
and for the uniform T,, case is
Gym = (1/4) eRePr. (54)

qwm denotes the mean value of g, around the
periphery of a cross section in both equations.

The value of g, for the uniform z case can be
obtained by putting # = 1 — § into equation
(43).

1 (C
915 A’+—<——

A
2D )(1—5)2+B(1—5)

A
—cos .

D (55)

1 /C
A/ _ - A
cosy = A + D w) +

We can get the value of g,; for the uniform T,
case from equation (46) in the same way as

before.
L€ E
2D

gla—N[] o+ A>(1—5)2
x coszl//+—{(1 -8+

C
E(‘—""

1815
eA2 3
(1 —6)*cos 2y ¢ x cos ¥
c 24?2 eA _
C 2A2
x [1 +E(5—(b> +%D—2]cos1//
~ 1 + (ed4/D)cos . (56)

For the uniform 1 case, equation (55) is sub-
stituted into equation (50), g,,, obtained from
equation (50) info equation (53) and neglect
smaller terms than 6* to get A'.

A!
= (Pr'™* — AA)
m —
I +—5—96
m

Rell(m+' 1)

Ty ey (57)

where A’ and AA’ are given below.
- 1 1
! = - | = 1
log A —" |:4 {(4m + 5)log2m + 1)

+ (4m — S5)logm — (8m — 15)log(2m — 1)
— 11 log(4m — 1) — log (6m — 1) — 7log 2}

+ log oc] —logp (58)
. dm(dm — 1)(6m — 1) B
TCmy )PCm -1 o (59)

For the uniform T,
applied to get
dm(4m — 1) (6m — 1) (m — B
2m + 1)22m — 1)3

The value obtained by substituting Aeinto A4’ in
equation (57) is equal to 1/e. Since these cor-
rection terms A4’ and Ae are small, A" and 1/e
are nearly equal.

case, the same way is

Ae =

(60)

3.4. Energy integral equations in the boundary
layer

The energy integral equation for the uniform 7
case is given as:

d o o
qw/Pr = g45 %jvdé - %ngdé + deé- (61)
0 0

[
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For the uniform T, case, the energy integral
equation is obtained by replacing the third term
on the right-hand side of equation (61) by

g

ef wgdé.
4]
However, convective terms due to w, ie.
] 3
 wd¢ and e wgdé, are negligibly small.
0

0
The temperature distribution in the boundary

layer is assumed to be
g = g1 &)™ (62)

where #' is an unknown quantity to be obtained.

From equation (50), g,, can be rewritten in the
following forms. For the uniform t case, we
have

G = Gum + Gy COS Y. (63)
For the uniform T, case, we have
G0 = Gum T GueCOS Y (64)

where
Gy = Gy PreA® ™ Dim=1m(4/D),

We substitute equations (10) and (62) into equa-
tion (61) and for the uniform ¢ case, we have

Guw = Gum + quA cOs . (65)
For the uniform T,, case, we have
Gw = Gym + Gy COS Y (66)
where
v prli 2m 1
G = L7 m— 111 1 41
o 2m-—1
1
-1 (67)
-+ 2
n

Therefore, n’ can be obtained by putting equation
(63) equal to equation (65) or equation (64) to
equation (66). The equation for n' is the same for
both wall temperature conditions because of the
relationship A’ = 1/e. The following equation
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for n’ for the uniform 7 case is also applicable to
the uniform T,, case.

nx2m-— 1. (68)

3.5. Nusselt numbers
For the uniform t case, equation {48) can be
expressed in the dimensionless form as:

Nu = 2m _ RePr (69)
In  2m
where g, 1s defined as:
nt1-6 n é
_ 2 dndy + |
9m~nRe gy winin gw
~x O -0
(1 -Qadédys. (70
For the uniform T, case, we have
R
Nu = iip-'ff. (71)

It is clear from equations (69) and (71) that 1/e
corresponds to g,,. However, the substitution of
equations(50),(9),(43), (62) and (68) into equation
(70) shows that 4’ is a governing factor in g,,.
Therefore, the wall temperature condition has no
influence on the Nusselt number since 4’ = 1/e
We will discuss the Nusselt numbers for the
uniform 7 case in the following analysis.

The Nussett number is derived from equation
(69) and (70).

1 Pr  ReMem*V

Nu = 24 Pr “IAg (Fy) T2+ D)

ANu

Re e PHmE D
Fm{Z X'm;’Z

where correction terms Ag,, and ANwu are given

(72)

1+

by
_4mm — )(4m — )(6m — 1) §
A = @m + )2 2m — 1) (73)
4m? — 2m — 1
ANU = m+ 1) (74)
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The ratio of the Nusselt number to that without
asecondary flow is

Nu Prl—x Re 1/m(m+ 1)
Nu, ~ 24B(PF~Ag,) (W x’""2>
ANu
1+ Re 7o D | (75)
=

For a case of Pr = 1, from m = 4, a = 0305,
B = 0:038and k = 1/3 we obtain

0-039Pr  Ret
Pr3 — 0074 (Fy)"®

Nu4 =
0-093

Re W |
I

For a case of Pr > 1, from the relation between
m=25 a=0184, § =0023 and k =04 and
Pr*/(Pr* — Ag,) = 1 we get

I+ (76)

Re?
Nu. PF%4 = 0025 ——
> (I'ys)™

0059

R %
The ratio of Nu/Nu, for Pr = 1 is illustrated
in Fig. 5 and for Pr > 1 in Fig. 6.

1+ 77

1ty

100

[ | TR T I N ¢ 1

5 10
Re/(T'x)
FIG. 5. Nu/Nu, vs. Re/T*y'* at Pr = 0'7 and 1.
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4. EXPERIMENTS

4.1. Experimental apparatus

The experimental apparatus is drawn in Fig. 7.
It is divided into a rotating body and two
measuring parts (1), (2) as shown in Fig 8.
We can vary the speed of rotation of the body
by a motor (3) from 0 to 1000 rpm. The slip-ring
mechanisms (7), (8) are used for the heat-input
and the measurement of temperature. The input
can be adjusted by the slidacs. A compensating
circuit is set to correct errors of the temperature
measurement due to a temperature rise at a slip-
ring. The air sent from a compressor enters the
straight pipes (1), (2) after it travels trough a flow
meter (5), an air-input apparatus having a seal
mechanism (6), and the rotating body. A flow
rectifier is set at the entrance to the part which
measures the heat-transfer rate to minimize the
influence of the curvature of this apparatus upon
the inflow of the air.

The measuring parts consist of those for heat
and mass transfer rates as shown in Fig. 8.

The measuring part for the mass transfer rate
is divided into two semicylinders suitable for
the measurement of the rate of sublimation by
using the naphthalene-sublimation technique.
Naphthalene with a 6 mmi.d. and a 3-5 mm thick-
ness is cast onto the inner wall of the brass semi-
cylinder, which is covered with three heaters to
keep the wall temperature constant in the
direction of the flow. Moreover, an insulator
covers these heaters.

We put thermo-couples within the naphthalene
layer to measure the temperature at the surface
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Heat transfer
measuring part
Mass transfer
measuring part
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mechanism

50¢"

5F 4 i
E fso'r'pe-lgglﬁicul | | measurement
2 power input ' ‘ B LSS RAS SR AARNNE
i
S afum [l e
F1G. 7. Experimental apparatus.
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FiG. §. Detailed measuring parts.

by extrapolating from a temperature drop within The thickness of sublimation of the naphtha-
this layer. The wall temperature is measured at  lene is measured by using a micrometer with a
four positions along the pipe axis and at six special attachment suitable for the measurement.
positions in the circumferential direction at one The measuring part for the heat transfer rate
of the four axial positions. is a straight brass pipe with a 9 mm i.d. The outer
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surface of the pipe is covered with seven separate
heaters in the axial direction. An insulator is
used around the heaters. A sub-heater is
attached at the exit part of the pipe to prevent
heat loss. Measurement of the wall temperature
is made at nine positions in the axial direction.
The temperature distribution is obtained in the
circumferential direction at three positions
among the nine mentioned above. The tempera-
ture at the center is measured at two positions
in the fully developed field on the pipe axis.

4.2. Measuring method and arrangement
The mass transfer coefficient for the experi-
ments on mass transfer is defined as:

m = hD(va - Cus) (78)

where 1 is the rate of sublimation per unit time
and unit area, and C,, and C,, denote the
concentrations of naphthalene vapor at the
naphthalene surface and in the flow core region.
C,, and C,, can be expressed as follows by
using the well-known relationship.

vw = —BIJL’ Cvs = —A{
R,T, V.
where P, describes the vapor pressure at the
naphthalene surface, R, the gas constant, M
the total rate of sublimation up to the measuring
position and ¥, the mean flow rate of the fluid.
The rate of sublimation 1 is expressed as
follows in the measurement of the naphthalene
thickness.

C (79)

= yS (80)

where y denotes the specific weight and S the
thickness of naphthalene sublimation.

The mass transfer coefficient ny, is derived from
equations (78)80)

_s
o
Vn

=
R,T,

(81)

The analogous Nusselt number is defined by
using the analogy between mass and heat
transfer.
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Nu, = Sh(Pr/Sc) 82)

where Sh expresses the Sherwood number
= 2 ahp/D,, Pr the Prandtl number, Sc the
Schmidt number = 26 [ is a transformation
exponent, the value of which is usually deter-
mined as | = 1/3 for the forced convection. We
also adopt this value for both laminar and
turbulent regions in this paper.

The experiments are made under these con-
ditions; the speed of rotationn = 0 ~ 1000rpm. ;
Re = 1000 ~ 10800; T,, = 25 ~ 45°C; and the
measuring time lasts 3 h. We neglect the rate
of sublimation during the measurement of the
naphthalene thickness sublimated because it is
considered to be a little less than 5 per cent of that
during the pipe rotation.

The Nusselt number for the experiments on
heat transfer is defined in the following equation.

Nu = 2aQ,,./KT, — T,) (83)

for the fully developed velocity and temperature
distributions is written as:

Qum = (1/2) 1aW,yC, (84)

where 7 is the temperature gradient in the axial
direction, W, the mean velocity, y the specific
weight and C, the specific heat.

According to the results of the measurement
of temperature, the temperature gradient of the
pipe wall toward the axial direction agrees with
that at the center of the pipe. Since the difference
found between temperatures at the center ob-
tained theoretically and experimentally is within
10 per cent, T,, is obtained from the velocity and
temperature distributions assumed and the
temperature at the center experimentally
measured.

5. EXPERIMENTAL RESULTS

5.1. Experiments in the laminar region
(i) Experiments for calibration (Experiments
when a pipe is not rotating). We made experiments
on forced convective heat-transfer, when a pipe
is not rotating, to examine the accuracy of our
measurements. The local Nusselt number taken
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in the radial direction in the cross section at
Z/L= (063, when the pipe is not rotating,
i.e. without a secondary flow, is illustrated in
Fig. 9. The solid line in the figure represents
the solution of the Nusselt number for the con-
stant wall temperature with the parabolic
velocity distribution. The experimental results
agree well with this solution and have little

Re =1000 ~—— Theoretical curve
Z/. = 083 {constant wall temperature
Tw =40°C with parabolic velocity
T. =25°C Mo, distribution)
5
\
5 + 5 Ny,
| [ )
1
[ ]
5
n =0 rev/min
F1G. 9. Local mass fransfer result in Iaminar region (no
rotation).

variation in the circumferential direction, The
analogous Nusselt number in the direction of
the flow agrees well with the theoretical solution
when the pipe is not rotating. It is clear from the
experimental results mentioned above that the
experimental apparatus and the measuring
methods are suitable for our study.

(ii) Experiments when a pipe is rotating.
One of the experimental results when the pipe
is rotating is given in Fig. 10. It shows the local
Nusselt number by equation (82) in the cross
section at Z/L = 063, where the velocity field
is considered to be fully developed. The solid
line in the figure represents the theoretical solu-
tion obtained in the first report and the dotted
line the solution when the pipe is not rotating.
Good agreement is seen between the ex-
perimental results and the theoretical solution,
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e Theoretical curve

— -~ Theorsticol curve
{ no rotation,i.e.
without o secondary
flow}

Nuty
40

Re = 2200

N =228xI0°

ZIL= 063

Tv =4l4°C

Tir =29°C
-

Rotation

n =920 rev/min

F16. 10. Local analogous Nusselt number in laminar region
(rotation).

and the heat-transfer rate increases in the
direction of the action of the Coriolis force.

We vary the speed of rotation and the Reynolds
number, which are parameters of these experi-
ments, to make experiments and to plot the
results in Fig. 11. The ratio of the mean Nusselt
number obtained from further experiments to
that for a case without a secondary flow, Nu/Nu,,
is shown on the ordinate in Fig. 11 and the
dimensionless parameter describing . the in-
fluence of the Coriolis force found in the theoreti-
cal analysis on the abscissa. The @-marks repre-
sent the results obtained from the mass transfer
experiments by using the analogy between heat
and mass transfer, the O-marks the experi-
mental results from heat-transfer experiments,
the solid and the dotted lines the theoretical
solutions for cases of the constant wall tempera-
tureand theconstant gradient of wall temperature,
respectively. The distribution of the local Nusselt
number in the cross section at Z/L = 063
represented by a ®-mark correspondsto Fig. 10.
These results show that the analogy is established
between heat and mass transfer and that the
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Fi1G. 11. Heat and mass experimental results in laminar region.

heat-transfer rate in the laminar region increases
considerably due to a secondary flow caused by
the rotation of the pipe.

5.2. Experiments in the turbulent region

(i) Experiments for calibration (Experiments
when a pipe is not rotating). The distribution of
the local analogous Nusselt number in the cross

- ~~=Theoretical curve

Re =10000 ( no rotation ,i.e.
Z/L =063 without a secondary
v =34-6°C Nug flow)

L. =l4°C 40

section at Z/L = 063 when a pipe is not rotating
is illustrated in Fig. 12 as the calibration in the

——— Theoretical curve
— - =Theoretical curve

Mo (r\:l?t:\(glﬂ'?ge'é:r{dory
Re = 10 400 flow)
I' =972
2/L= 0-63
7, = 28-4°C

Tir = 7°C @

Rotation

n =920 rev/min

n =0 rev/min
F1G. 12. Local mass transfer result in turbulent region (no
rotation).

Fic. 13. Local mass transfer result.in turbulent region
(rotation).

turbulent region. The solution for a case without

a secondary flow is shown by the dotted line.

It agrees with the experimental results and they

remain the same in the circumferential direction.
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Therefore, the experimental apparatus and the
measuring methods are accurate and suitable
1or 1ne experiments in the turbulent region.
(ii) Experiments when a pipe is rotating. We give
the distribution of the local analogous Nusselt
number in the cross section at Z/L= 063 in
Fig. 13 as an example of the experimental results
when the pipe is rotating. The dotted line denotes
the solution for a case without a secondary
flow and the solid line the theoretical solution.
They agree well with the experimental resulis.
Even though the influence of the secondary flow
is seen all over the pipe, an increase in the local
Nusselt number at the stagnation point of the
secondary flow is not so considerable. It is
different from the case in the laminar region in
Fig. 10.

We vary the speed of rotation and the
Reynolds number to take the ratio of Nu to Nu,,.
The results are shown in Fig. 14. We express the

N

. N 0:046 :{ 07

Re o
— 1-\-"};; =112 (“I-,'z')?;a) {H{ ﬁ; 2)‘,5 .
Iy

Re
= wem—"
@
* Results of mass tronsfer exp.
13} © Results of heat transfer exp.

ot e —1

o oo
' C’——//

o i ! l R
y . 08 |
o o2 re/(Tyr 1P

Fi1G. 14. Heat and mass experimental resulis in turbulent
region.

results of mass transfer the the @-marks and
the experimental solutions of heat transfer by the
O-marks. The solid line describes the theoretical
solution reported in this paper, which agrees
fairly well with the experimental results. The
distribution of the Nusselt number represented
by a ®-mark in the cross section corresponds to
Fig 13.

The following characteristics are found in the
case of the turbulent region from these results:
the influence of a secondary flow caused by the
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Coriolis force is not so considerable in the
turbulent region as in the laminar region; though
the increase in the mean Nusselt number is
more than 10 per cent, the distribution of the
local Nusselt number has little variation in the
circumferential direction.

6. CONCLUSIONS

In a straight circular pipe rotating around an
axis perpendicular to its own axis, the theoretical
analysis on the velocity and temperature fields
in the fully developed turbulent flow and the
experiments on the laminar and turbulent
regions were made. We came to the following
conclusions from the results. (1) The boundary
layer is assumed to appear along the pipe wall
in an analysis on the flow in the turbulent region.
The resistance coefficient for the fully developed
velocity field obtained here is referred to that
being in proportion to Re '™ The value
obtained by setting m = 4 agrees well with the
experimental results. (2) In an analysis on heat
transfer in the turbulent region, the Nusselt
number is obtained on the assumption that it is
in proportion to Re™™ ™ Pr* The ratio of the
mean Nusselt number Nu to Nu; for a case
without a secondary flow is obtained as a func-
tion of the dimensionless parameters including
the speed of rotation and the Reynolds number.
A considerable increase in Nu/Nu, is not seen in
comparison with the case of the laminar flow,
and the local Nusselt number has little variation
in the circumferential direction. (3) The experi-
ments on heat and mass transfer were performed
by using the naphthalene-sublimation technique.
The distributions of the heat-transfer coefficient
and the mean heat-transfer coefficient in the
circumferential direction in the cross section of
the laminar and turbulent regions were obtained.
Good agreement was found between the Nusselt
number experimentally obtained and the
analytical results of the laminar and turbulent
regions reported in the first and this paper.
respectively.
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TRANSFERT PAR CONVECTION THERMIQUE DANS UN TUBE TOURNANT
AUTOUR D’UN DIAMETRE D’UNE SECTION DROITE CIRCULAIRE

Résumé—Dans un tube rectiligne a section droite circulaire tournant autour d’un axe perpendiculaire &
son propre axe. il apparait un écoulement secondaire provoqué par la force de Coriolis, ce qui entraine
I’augmentation de la résistance & Pécoulement et du flux thermique. On étudie tout d’abord de maniére
théorique dans cet article la convection thermique turbulente pour des champs de température ¢t de
vitesse pleinement développés en supposant une couche limite le long de la paroi. Les accroissements des
rapports des nombres de Nusselt Nu/Nu, et du rapport des coefficients de frottement 1/4, (les dénomi-
nateurs correspondant a I'absence de I'écoulement secondaire) sont moindres pour le cas turbulent que
pour le cas laminaire. De plus on montre que le nombre de Nusselt local ne varie pas beaucoup sur la
circonférence. On rend compte des résultats expérimentaux concernant le coefficient de transfert thermique
et le coefficient de transfert massique local par utilisation de la technigue de sublimation du naphtaléne
pour les régions laminaires et turbulents. Le résultat théorigue pour le coefficient de frottement est en
accord avec les résultats expérimentaux rapportés ultérieurement. Les résultats expérimentaux présentés
sur le transfert thermique sont en bon accord avec la formule théorique relative aux nombres de Nusselt
local et moyen donnée dans cet article et dans le premier rapport.

KONVEKTIVE WARMEUBERTRAGUNG IN EINEM RADIAL ROTIERENDEN
ZYLINDRISCHEN ROHR.

Zusammenfassung—In cinem geraden zylindrischen Rohr, das um eine Achse senkrecht zur Zylinderachse
rotiert, entsteht infolge der Corioliskraft eine Sekundirstromung, durch die der Stréomungswiderstand
und die iibertragene Wirmemenge zunimmt. In dieser Arbeit wird erstens unter der Annahme einer
Grenzschicht entlang der Rohrwand die turbulente Wirmeiibertragung bei voll ausgebildetem Geschwin-
digkeitsprofil und das Temperaturfeld theoretisch untersucht. Die Zunahme der Verhiltnisse der Nusselt-
Zahl Nu/Nu, und der Reibungskoeffizienten 1/1,—wobel sich die Grdssen im Nenner auf den Fall
ohne Sekundirstromung beziehen-—ergab sich dabei kieiner als im laminaren Bereich.

Uberdies konnte keine grosse Verinderung der lokalen Nusselt-Zahl iiber dem Zylinderumfang fest-
gesteilt werden.

Als zweites wird iiber experimentelle Ergebnisse fiir den Wirmeiibergangskoeffizienten und fir den
lokaien Stoffiibergangskoeffizienten, bei Verwendung der Naphthalin-Sublimations-Technik, im lami-
naren und im turbulenten Bereich berichtet.

Die Ubereinstimmung der theoretischen und der experimentellen Werte fiir den Reibungskoettizienten
wurde schon frither erwihnt. Unsere vorliegenden experimentellen Werte fiir den Wiarmeiibergang
stimmen iiberein mit den theoretischen Werten fiir die lokale und die mittlere Nusselt-Zahl, wie sie in

diesem und im ersten Bericht behandelt sind.

HOHBEKTUBHbLIN [IEPEHOC TEILJIA BO BPAIIAIOIIENCAH
PAJIVAJIBHON KOJIBIIEBON TPYBE

Amnoranps—B npamolt Konsyesoit TpyGe, Bpamanuieiics BOKPYT OCH, NePHEHIUKYIAPHON
cBoell cobcrseHHON och, 6IArogapa KOPUOANCOBON CHJIe BOBHHKACT BTOPHYHOS TeUeHHE, U3-33
KOTOPOro yBeIMYUBaeTCA CONPOTUBAECHHE NOTOKA M CHODOCTD Iepenoca renia. B nacroamed
paboTe npoBeNeHO TeopeTHYeckoe MCClegoBaHue TypOyJIeHTHON TeINIOBOH KOHBEKMUHM UPH
MOJIHOCTBIO PASBUTHIX ITOJIAX CKOPOCTH M TEMIIEPATYPH B IPEAIONOKEHNH HATHYKA MTOrPAHHY-~
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HOTO CJI0A BoJIb cTenkn. Halifeno, uyto yBennyuenue orHomernusa yucaa Hyccesnbra Nu/Nug u
oTHOmEHUA KodQduuuenta TpeHua A/A; AaA TYpOYNEHTHOrO TedeHHA, e B 3HAMEHATEJM
COOTHOIIEHUI BXOAAT BeJMYMHH 6e3 BTOPUYHOIO IOTOKA, MeHbILE, YeM B JIAMMHAPHONK 06-
nacri. Kpome Toro, mokazano, 4ro He CylIecTByeT GOJbIINX UBMEHEHHI 1O OKPYHHOCTH
JoranbHOro yuciaa Hyccenbra.

Bo-BTOpHX, IpeACTABIEHH YKCIEPUMEHTANbHbIE 3HAUEHUA Ko3(PUIMEHTa IIepeHOca TeTia,
a Tarke KO3OPUIMEHTA JOKATLHOTO MePEeHOCa MACCH C MOMONbI0 cybaumManuy HapraanHa B
naMuHapHX ¥ TypOyieHTHHX o6uactax. Teoperndeckue sHaueHUA KoadOUUUEHTA TpeHMH
€OTJIACYIOTCH C IIPMBEJEHHBIMY PaHee YKCIePUMEHTAJbHBIMY 3HAUEHUAMN . JKCIepNMEeHTAIb-
Hyle IAHHBE MO TepeHOCY TeIlla, NpUBefleHHHE B NAHHOH paborTe, COrilacywrcs ¢ TeopeTH-
YecKMMH (OpMYyJaMM AJA JOKAIBHHX M cpegHMx uucen Hyccenbra, npuBeeHHHX B Ha-

crosmelt pabotTe u B NEPBOM OTHETE.



